Supplement

– Cost Effective Supplements

Sodium Bicarbonate

Quick navigation


What are Sodium Bicarbonate's other names?

  • Baking Soda
  • Bicarb
  • Bicarbonate

What is Sodium Bicarbonate's recommended dosage?

  • Recommended daily intake: 200 - 500 mg/kg
  • Recommended daily doses: 3

What supplements interact with Sodium Bicarbonate?

No supplements that have a synergystic effect with this one.

What can Sodium Bicarbonate help with?

No studies that show the effects of this supplement on health conditions.

What is Sodium Bicarbonate used for?

  • Sodium Bicarbonate for Overall health

test
Highly Positive


Accordingly, the cerebral metabolic ratio decreased equally during the Sal and Bicarb trials: from 5.8±0.6 at rest to 1.7±0.1 and 1.8±0.2, respectively. The enlarged blood-buffering capacity after infusion of Bicarb eliminated metabolic acidosis during maximal exercise but that did not affect the cerebral lactate uptake and, therefore, the decrease in the cerebral metabolic ratio.


test
Highly Positive


Administration of NaHCO3 from the start of the diet to the subjects in group 2 prevented both the metabolic acidosis and the increase in NH4+ N excretion and attenuated the increase in blood and urine 3-hydroxybutyrate. When NaCl replaced NaHCO3 during week 4, ammonium N excretion doubled. Urea N excretion was comparable in both groups and was unaffected by bicarbonate.(ABSTRACT TRUNCATED AT 250 WORDS).


test
Highly Positive


Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.


test
Highly Positive


Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.


test
Highly Positive


Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS).


test
Highly Positive


As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.


test
Highly Positive


Blood [HCO3-] was significantly higher (P < or = 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4)s; CIT 172.8 (SEM 29.7)s; and PLC 222.3 (SEM 39.7)s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.


test
Highly Positive


Blood free fatty acids (FFA) increased with NaHCO3, and FFA and glycerol decreased with NH4Cl and Arg-HCl, suggesting that FFA availability mediated the pH effects on hepatic ketogenesis. These results demonstrate that modest changes in systemic pH modify FFA availability and TK production rates.


test
Highly Positive


Blood lactate concentration [La] progressively increased with the completion of each exercise set ([La] set 1-5: NaHCO3, 1.37 to 11.15; placebo, 1.31 to 9.81 mM); but were not significantly different between treatments. Repetitions performed in the final exercise set were not significantly different between groups (NaHCO3: 19.6 +/- 1.6, placebo: 18.2 +/- 1.1 repetitions).(ABSTRACT TRUNCATED AT 250 WORDS).


test
Highly Positive


Blood lactate, pH, SBC and BE were significantly higher (P less than 0.05) at post-exercise in NaHCO3 treatments. These data are in agreement with previous findings that during repeated bouts of exercise pre-exercise administration of NaHCO3 improves performance, possibly by facilitating the efflux of hydrogen ions from working muscles and thereby delaying the onset of fatigue.


test
Highly Positive


Both acute and serial NaHCO3 loading significantly improved 4-minute cycling performance when compared with that in a placebo trial. However, serial NaHCO3 loading may provide a convenient and practical alternative approach for athletes preparing for competition.


test
Highly Positive


Despite longer exercise duration in alkalosis, plasma norepinephrine and epinephrine concentrations at exhaustion were reduced by 30 and 34%, respectively. These results indicate that alkalosis increased muscle lactate accumulation during exhaustive exercise. These changes were associated with a reduced blood catecholamine response to exercise.


test
Highly Positive


Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.


test
Highly Positive


Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.


test
Highly Positive


In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.


test
Highly Positive


In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.


test
Highly Positive


It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.


test
Highly Positive


NaHCO3 administration for 5 d may prevent acid-base balance disturbances and improve performance during anaerobic exercise in a dose-dependent manner.


test
Highly Positive


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


test
Highly Positive


NaHCO₃ supplementation increased blood HCO₃⁻ concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO₃ may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


test
Highly Positive


Our findings suggest that training intensity, rather than the accumulation of H(+) during training, may be more important to improvements in beta m. The group ingesting NaHCO(3) before each training session had larger improvements in the LT and endurance performance, possibly because of a reduced metabolic acidosis during training and a greater improvement in muscle oxidative capacity.


test
Highly Positive


Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols.


test
Highly Positive


Pre-exercise alkalosis attenuates blood acid-base perturbations from supramaximal exercise to exhaustion, regardless of whether the recovery mode is active or passive. These findings suggest that individuals may benefit from introducing a pre-exercise alkalotic condition while including passive recovery during high-intensity training protocols.


test
Highly Positive


Rating of perceived effort (RPE) was not influenced nor ratings of perceived readiness. Sodium bicarbonate ingestion modified significantly the blood acid-base balance, although the induced alkalosis did not improve the Wingate test performance, RPE and perceived readiness across three consecutive WTs in elite BMX cyclists.


test
Highly Positive


Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.


test
Highly Positive


Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


test
Highly Positive


The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.


test
Highly Positive


The intravascular volume expansion with NaHCO3 rather than the increase in blood buffer capacity may underlie the previously reported benefit of orally ingested bicarbonate in exercise performance.


test
Highly Positive


The primary finding of this investigation was that orally-induced alkalosis does not significantly affect plasma epinephrine concentrations or performance following 90 s of maximal cycle exercise in untrained men.


test
Highly Positive


The results indicate that subacute acid base changes do not affect proinsulin cleavage. Although acute calcium loading has no demonstrable effect, chronic hypercalcaemia may influence the mechanism of insulin secretion.


test
Highly Positive


The results of this study suggest that ingestion of NaHCO(3) improves sprint performance during prolonged intermittent cycling.


test
Highly Positive


The results of this study suggest that NaHCO3 ingestion can improve intermittent-sprint performance and may be a useful supplement for team-sport athletes.


test
Highly Positive


The results of this study suggest that the ingestion of NaHCO(3) before intermittent type exercise was sufficient to induce metabolic alkalosis but did not significantly affect performance. However, because significant individual variations in performance were observed, an individual approach to bicarbonate ingestion is recommended based on the intensity and duration of the required performance.


test
Highly Positive


The single 0.2 and 0.3 gxkg-1 NaHCO3 dosages appeared to be the most effective for increasing blood-buffering capacity. The 0.2 gxkg-1 dosage is best ingested 40 to 50 minutes before exercise and the 0.3 gxkg-1 dosage 60 minutes before exercise.


test
Highly Positive


The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.


test
Highly Positive


There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.


test
Highly Positive


These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.


test
Highly Positive


These data suggest that successive 30-s high intensity performance may be improved when coupled with NaHCO3 supplementation.


test
Highly Positive


Thigh muscle (vastus lateralis) pH measured immediately before the fifth cycling bout in four of the subjects revealed that the working muscles were less acid in the NaHCO3 trial (pH = 6.81) than during the NaCl treatment (pH = 6.73). Thus, the alkalizing influence of oral HCO3 supports the concept that the hydrogen ion concentration in blood and muscle has a direct influence on performance during repeated, supramaximal exercise.


test
Highly Positive


This is likely because of the lower blood pH and slower recovery of blood HCO(3) post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO(3), however, its negative impact on repeated maximal exercise performance is reversed.


test
Highly Positive


This may be a result of a lower demand on the whole body metabolic system in comparison with that for other modes of exercise in which ergogenic effects have been found.


test
Highly Positive


This study demonstrated that, although alkali ingestion resulted in significant shifts in the blood acid-base balance, it failed to affect the 600 m running performance.


test
Highly Positive


This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.


test
Highly Positive


This study examined the increase in blood pH and bicarbonate concentration after ingestion of a standard sodium bicarbonate solution. Peak blood pH and bicarbonate concentration occurred between 60 and 90 minutes. Values decreased over the remainder of the ingestion period although still elevated above preingestion levels.


test
Highly Positive


Time to exhaustion at 100% of VO2max was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)].(ABSTRACT TRUNCATED AT 250 WORDS).


test
Highly Positive


We would suggest using chronic ingestion as a means to improve high intensity work rather than the acute ingestion of sodium bicarbonate. The ingestion of sodium bicarbonate, over a period of six days, significantly improved work output two days after bicarbonate ingestion ceased.


test
Highly Positive


When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


  • Sodium Bicarbonate for Skin, hair and nails

  • Sodium Bicarbonate for Heart health

test
Moderately Positive


Administration of NaHCO3 from the start of the diet to the subjects in group 2 prevented both the metabolic acidosis and the increase in NH4+ N excretion and attenuated the increase in blood and urine 3-hydroxybutyrate. When NaCl replaced NaHCO3 during week 4, ammonium N excretion doubled. Urea N excretion was comparable in both groups and was unaffected by bicarbonate.(ABSTRACT TRUNCATED AT 250 WORDS).


test
Moderately Positive


Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.


test
Moderately Positive


Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS).


test
Moderately Positive


As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.


test
Moderately Positive


Blood [HCO3-] was significantly higher (P < or = 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4)s; CIT 172.8 (SEM 29.7)s; and PLC 222.3 (SEM 39.7)s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.


test
Moderately Positive


Blood free fatty acids (FFA) increased with NaHCO3, and FFA and glycerol decreased with NH4Cl and Arg-HCl, suggesting that FFA availability mediated the pH effects on hepatic ketogenesis. These results demonstrate that modest changes in systemic pH modify FFA availability and TK production rates.


test
Moderately Positive


Blood lactate concentration [La] progressively increased with the completion of each exercise set ([La] set 1-5: NaHCO3, 1.37 to 11.15; placebo, 1.31 to 9.81 mM); but were not significantly different between treatments. Repetitions performed in the final exercise set were not significantly different between groups (NaHCO3: 19.6 +/- 1.6, placebo: 18.2 +/- 1.1 repetitions).(ABSTRACT TRUNCATED AT 250 WORDS).


test
Moderately Positive


Blood lactate, pH, SBC and BE were significantly higher (P less than 0.05) at post-exercise in NaHCO3 treatments. These data are in agreement with previous findings that during repeated bouts of exercise pre-exercise administration of NaHCO3 improves performance, possibly by facilitating the efflux of hydrogen ions from working muscles and thereby delaying the onset of fatigue.


test
Moderately Positive


Both acute and serial NaHCO3 loading significantly improved 4-minute cycling performance when compared with that in a placebo trial. However, serial NaHCO3 loading may provide a convenient and practical alternative approach for athletes preparing for competition.


test
Moderately Positive


Despite longer exercise duration in alkalosis, plasma norepinephrine and epinephrine concentrations at exhaustion were reduced by 30 and 34%, respectively. These results indicate that alkalosis increased muscle lactate accumulation during exhaustive exercise. These changes were associated with a reduced blood catecholamine response to exercise.


test
Moderately Positive


Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.


test
Moderately Positive


Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.


test
Moderately Positive


In conclusion, bicarbonate supplementation does not appear to improve insulin sensitivity or glucose control in non-diabetic older adults.


test
Moderately Positive


In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.


test
Moderately Positive


In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.


test
Moderately Positive


It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.


test
Moderately Positive


NaHCO3 administration for 5 d may prevent acid-base balance disturbances and improve performance during anaerobic exercise in a dose-dependent manner.


test
Moderately Positive


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


test
Moderately Positive


NaHCO₃ supplementation increased blood HCO₃⁻ concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO₃ may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


test
Moderately Positive


Our findings suggest that training intensity, rather than the accumulation of H(+) during training, may be more important to improvements in beta m. The group ingesting NaHCO(3) before each training session had larger improvements in the LT and endurance performance, possibly because of a reduced metabolic acidosis during training and a greater improvement in muscle oxidative capacity.


test
Moderately Positive


Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols.


test
Moderately Positive


Pre-exercise alkalosis attenuates blood acid-base perturbations from supramaximal exercise to exhaustion, regardless of whether the recovery mode is active or passive. These findings suggest that individuals may benefit from introducing a pre-exercise alkalotic condition while including passive recovery during high-intensity training protocols.


test
Moderately Positive


Rating of perceived effort (RPE) was not influenced nor ratings of perceived readiness. Sodium bicarbonate ingestion modified significantly the blood acid-base balance, although the induced alkalosis did not improve the Wingate test performance, RPE and perceived readiness across three consecutive WTs in elite BMX cyclists.


test
Moderately Positive


Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.


test
Moderately Positive


Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


test
Moderately Positive


The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.


test
Moderately Positive


The intravascular volume expansion with NaHCO3 rather than the increase in blood buffer capacity may underlie the previously reported benefit of orally ingested bicarbonate in exercise performance.


test
Moderately Positive


The primary finding of this investigation was that orally-induced alkalosis does not significantly affect plasma epinephrine concentrations or performance following 90 s of maximal cycle exercise in untrained men.


test
Moderately Positive


The results indicate that subacute acid base changes do not affect proinsulin cleavage. Although acute calcium loading has no demonstrable effect, chronic hypercalcaemia may influence the mechanism of insulin secretion.


test
Moderately Positive


The results of this study suggest that ingestion of NaHCO(3) improves sprint performance during prolonged intermittent cycling.


test
Moderately Positive


The results of this study suggest that NaHCO3 ingestion can improve intermittent-sprint performance and may be a useful supplement for team-sport athletes.


test
Moderately Positive


The results of this study suggest that the ingestion of NaHCO(3) before intermittent type exercise was sufficient to induce metabolic alkalosis but did not significantly affect performance. However, because significant individual variations in performance were observed, an individual approach to bicarbonate ingestion is recommended based on the intensity and duration of the required performance.


test
Moderately Positive


The single 0.2 and 0.3 gxkg-1 NaHCO3 dosages appeared to be the most effective for increasing blood-buffering capacity. The 0.2 gxkg-1 dosage is best ingested 40 to 50 minutes before exercise and the 0.3 gxkg-1 dosage 60 minutes before exercise.


test
Moderately Positive


The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.


test
Moderately Positive


There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.


test
Moderately Positive


These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.


test
Moderately Positive


These data suggest that successive 30-s high intensity performance may be improved when coupled with NaHCO3 supplementation.


test
Moderately Positive


Thigh muscle (vastus lateralis) pH measured immediately before the fifth cycling bout in four of the subjects revealed that the working muscles were less acid in the NaHCO3 trial (pH = 6.81) than during the NaCl treatment (pH = 6.73). Thus, the alkalizing influence of oral HCO3 supports the concept that the hydrogen ion concentration in blood and muscle has a direct influence on performance during repeated, supramaximal exercise.


test
Moderately Positive


This is likely because of the lower blood pH and slower recovery of blood HCO(3) post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO(3), however, its negative impact on repeated maximal exercise performance is reversed.


test
Moderately Positive


This may be a result of a lower demand on the whole body metabolic system in comparison with that for other modes of exercise in which ergogenic effects have been found.


test
Moderately Positive


This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.


test
Moderately Positive


This study examined the increase in blood pH and bicarbonate concentration after ingestion of a standard sodium bicarbonate solution. Peak blood pH and bicarbonate concentration occurred between 60 and 90 minutes. Values decreased over the remainder of the ingestion period although still elevated above preingestion levels.


test
Moderately Positive


Time to exhaustion at 100% of VO2max was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)].(ABSTRACT TRUNCATED AT 250 WORDS).


test
Moderately Positive


Treatment with a buffer, which effectively maintained pH above 7.40, significantly suppressed endorphin release (F = 3.07; P < 0.0001). The results of this study indicate that acidosis rather than any other physiological change associated with high-intensity exertion is the primary stimulus for beta-endorphin release.


test
Moderately Positive


We would suggest using chronic ingestion as a means to improve high intensity work rather than the acute ingestion of sodium bicarbonate. The ingestion of sodium bicarbonate, over a period of six days, significantly improved work output two days after bicarbonate ingestion ceased.


test
Moderately Positive


When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


  • Sodium Bicarbonate for Weight loss

test
Slightly Positive


Administration of NaHCO3 from the start of the diet to the subjects in group 2 prevented both the metabolic acidosis and the increase in NH4+ N excretion and attenuated the increase in blood and urine 3-hydroxybutyrate. When NaCl replaced NaHCO3 during week 4, ammonium N excretion doubled. Urea N excretion was comparable in both groups and was unaffected by bicarbonate.(ABSTRACT TRUNCATED AT 250 WORDS).


test
Slightly Positive


Bicarbonated mineral waters 1 and 2 did not show any significant differences. Drinking sodium bicarbonate-rich mineral waters reduces postprandial lipaemia in healthy postmenopausal women compared to drinking a low mineral water.


test
Slightly Positive


Blood free fatty acids (FFA) increased with NaHCO3, and FFA and glycerol decreased with NH4Cl and Arg-HCl, suggesting that FFA availability mediated the pH effects on hepatic ketogenesis. These results demonstrate that modest changes in systemic pH modify FFA availability and TK production rates.


test
Slightly Positive


However, oxidation of the exogenous acetate almost entirely (90%) replaced the additional fat that had been oxidized during the bicarbonate trial. We determined that 80.1 +/- 2.3% of an exogenous source of acetate is oxidized in humans at rest. Whereas NaHCO3 ingestion increased fat oxidation, a similar response did not occur following NaAc ingestion despite the fact both sodium salts induced a similar increase in energy expenditure and shift in acid-base balance.


test
Slightly Positive


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


  • Sodium Bicarbonate for Muscle building

test
Slightly Positive


Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.


test
Slightly Positive


Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.


test
Slightly Positive


Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS).


test
Slightly Positive


As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.


test
Slightly Positive


Blood [HCO3-] was significantly higher (P < or = 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4)s; CIT 172.8 (SEM 29.7)s; and PLC 222.3 (SEM 39.7)s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.


test
Slightly Positive


Blood lactate concentration [La] progressively increased with the completion of each exercise set ([La] set 1-5: NaHCO3, 1.37 to 11.15; placebo, 1.31 to 9.81 mM); but were not significantly different between treatments. Repetitions performed in the final exercise set were not significantly different between groups (NaHCO3: 19.6 +/- 1.6, placebo: 18.2 +/- 1.1 repetitions).(ABSTRACT TRUNCATED AT 250 WORDS).


test
Slightly Positive


Blood lactate, pH, SBC and BE were significantly higher (P less than 0.05) at post-exercise in NaHCO3 treatments. These data are in agreement with previous findings that during repeated bouts of exercise pre-exercise administration of NaHCO3 improves performance, possibly by facilitating the efflux of hydrogen ions from working muscles and thereby delaying the onset of fatigue.


test
Slightly Positive


Both acute and serial NaHCO3 loading significantly improved 4-minute cycling performance when compared with that in a placebo trial. However, serial NaHCO3 loading may provide a convenient and practical alternative approach for athletes preparing for competition.


test
Slightly Positive


Despite longer exercise duration in alkalosis, plasma norepinephrine and epinephrine concentrations at exhaustion were reduced by 30 and 34%, respectively. These results indicate that alkalosis increased muscle lactate accumulation during exhaustive exercise. These changes were associated with a reduced blood catecholamine response to exercise.


test
Slightly Positive


Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.


test
Slightly Positive


Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.


test
Slightly Positive


In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.


test
Slightly Positive


In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


test
Slightly Positive


In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.


test
Slightly Positive


In conclusion, water polo players should not expect substantial enhancement in intermittent-sprint performance from NaHCO3 supplementation.


test
Slightly Positive


It was concluded that during exercise consisting of repeated, short-duration sprints, power output was enhanced following the ingestion of sodium bicarbonate, (300 mg/kg body weight).


test
Slightly Positive


It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.


test
Slightly Positive


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


test
Slightly Positive


NaHCO₃ supplementation increased blood HCO₃⁻ concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO₃ may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


test
Slightly Positive


Our findings suggest that training intensity, rather than the accumulation of H(+) during training, may be more important to improvements in beta m. The group ingesting NaHCO(3) before each training session had larger improvements in the LT and endurance performance, possibly because of a reduced metabolic acidosis during training and a greater improvement in muscle oxidative capacity.


test
Slightly Positive


Results show that BA improved high-intensity cycling capacity. However, despite a 6-s (∼4%) increase in TTE with the addition of SB, this did not reach statistical significance, but magnitude-based inferences suggested a ∼70% probability of a meaningful positive difference.


test
Slightly Positive


Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.


test
Slightly Positive


Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


test
Slightly Positive


Ten of the athletes completed all the races. The athletes' average times for trials B, P and C were 253.9, 256.8 and 258.0 s, respectively. The data were analysed using a two-way ANOVA with replicates and Tukey tests. This revealed a difference between trial B and trials P and C (P < 0.05), but no difference between trials P and C. These findings, therefore, indicate that sodium bicarbonate can have an ergogenic effect upon 1500-m running.


test
Slightly Positive


The findings suggest that 0.3 g·kg-1 NaHCO3 ingested 2.5 hours before exercise enhances the blood buffering potential and may positively influence swim performance.


test
Slightly Positive


The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.


test
Slightly Positive


The intravascular volume expansion with NaHCO3 rather than the increase in blood buffer capacity may underlie the previously reported benefit of orally ingested bicarbonate in exercise performance.


test
Slightly Positive


The match-induced declines in the consistency scores were significantly larger in the placebo trial than those in the bicarbonate trial. This study suggested that NaHCO3 supplementation could prevent the decline in skilled tennis performance after a simulated match.


test
Slightly Positive


The primary finding of this investigation was that orally-induced alkalosis does not significantly affect plasma epinephrine concentrations or performance following 90 s of maximal cycle exercise in untrained men.


test
Slightly Positive


The results of this study suggest that ingestion of NaHCO(3) improves sprint performance during prolonged intermittent cycling.


test
Slightly Positive


The results of this study suggest that NaHCO3 ingestion can improve intermittent-sprint performance and may be a useful supplement for team-sport athletes.


test
Slightly Positive


The results of this study suggest that the ingestion of NaHCO(3) before intermittent type exercise was sufficient to induce metabolic alkalosis but did not significantly affect performance. However, because significant individual variations in performance were observed, an individual approach to bicarbonate ingestion is recommended based on the intensity and duration of the required performance.


test
Slightly Positive


The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.


test
Slightly Positive


There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.


test
Slightly Positive


These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.


test
Slightly Positive


These data suggest that successive 30-s high intensity performance may be improved when coupled with NaHCO3 supplementation.


test
Slightly Positive


Thigh muscle (vastus lateralis) pH measured immediately before the fifth cycling bout in four of the subjects revealed that the working muscles were less acid in the NaHCO3 trial (pH = 6.81) than during the NaCl treatment (pH = 6.73). Thus, the alkalizing influence of oral HCO3 supports the concept that the hydrogen ion concentration in blood and muscle has a direct influence on performance during repeated, supramaximal exercise.


test
Slightly Positive


This is likely because of the lower blood pH and slower recovery of blood HCO(3) post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO(3), however, its negative impact on repeated maximal exercise performance is reversed.


test
Slightly Positive


This may be a result of a lower demand on the whole body metabolic system in comparison with that for other modes of exercise in which ergogenic effects have been found.


test
Slightly Positive


This study demonstrated that, although alkali ingestion resulted in significant shifts in the blood acid-base balance, it failed to affect the 600 m running performance.


test
Slightly Positive


This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.


test
Slightly Positive


Time to exhaustion at 100% of VO2max was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)].(ABSTRACT TRUNCATED AT 250 WORDS).


test
Slightly Positive


We would suggest using chronic ingestion as a means to improve high intensity work rather than the acute ingestion of sodium bicarbonate. The ingestion of sodium bicarbonate, over a period of six days, significantly improved work output two days after bicarbonate ingestion ceased.


test
Slightly Positive


When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


test
Slightly Negative


Accordingly, the cerebral metabolic ratio decreased equally during the Sal and Bicarb trials: from 5.8±0.6 at rest to 1.7±0.1 and 1.8±0.2, respectively. The enlarged blood-buffering capacity after infusion of Bicarb eliminated metabolic acidosis during maximal exercise but that did not affect the cerebral lactate uptake and, therefore, the decrease in the cerebral metabolic ratio.


test
Slightly Negative


NaHCO3 administration for 5 d may prevent acid-base balance disturbances and improve performance during anaerobic exercise in a dose-dependent manner.


test
Slightly Negative


Rowers' performance in 2,000-m efforts can improve by ~2% with 6 mg/kg BM caffeine supplementation. When caffeine is combined with sodium bicarbonate, gastrointestinal symptoms may prevent performance enhancement, so further investigation of ingestion protocols that minimize side effects is required.


test
Slightly Negative


Treatment with a buffer, which effectively maintained pH above 7.40, significantly suppressed endorphin release (F = 3.07; P < 0.0001). The results of this study indicate that acidosis rather than any other physiological change associated with high-intensity exertion is the primary stimulus for beta-endorphin release.


  • Sodium Bicarbonate for Insulin control

  • Sodium Bicarbonate for Mental health

  • Sodium Bicarbonate for Emotional health


What are Sodium Bicarbonate's effects on the body?

  • Sodium Bicarbonate for the Digestive System

Accordingly, the cerebral metabolic ratio decreased equally during the Sal and Bicarb trials: from 5.8±0.6 at rest to 1.7±0.1 and 1.8±0.2, respectively. The enlarged blood-buffering capacity after infusion of Bicarb eliminated metabolic acidosis during maximal exercise but that did not affect the cerebral lactate uptake and, therefore, the decrease in the cerebral metabolic ratio.


Administration of NaHCO3 from the start of the diet to the subjects in group 2 prevented both the metabolic acidosis and the increase in NH4+ N excretion and attenuated the increase in blood and urine 3-hydroxybutyrate. When NaCl replaced NaHCO3 during week 4, ammonium N excretion doubled. Urea N excretion was comparable in both groups and was unaffected by bicarbonate.(ABSTRACT TRUNCATED AT 250 WORDS).


Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.


Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.


Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS).


As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.


Blood [HCO3-] was significantly higher (P < or = 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4)s; CIT 172.8 (SEM 29.7)s; and PLC 222.3 (SEM 39.7)s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.


Blood free fatty acids (FFA) increased with NaHCO3, and FFA and glycerol decreased with NH4Cl and Arg-HCl, suggesting that FFA availability mediated the pH effects on hepatic ketogenesis. These results demonstrate that modest changes in systemic pH modify FFA availability and TK production rates.


Blood lactate concentration [La] progressively increased with the completion of each exercise set ([La] set 1-5: NaHCO3, 1.37 to 11.15; placebo, 1.31 to 9.81 mM); but were not significantly different between treatments. Repetitions performed in the final exercise set were not significantly different between groups (NaHCO3: 19.6 +/- 1.6, placebo: 18.2 +/- 1.1 repetitions).(ABSTRACT TRUNCATED AT 250 WORDS).


Blood lactate, pH, SBC and BE were significantly higher (P less than 0.05) at post-exercise in NaHCO3 treatments. These data are in agreement with previous findings that during repeated bouts of exercise pre-exercise administration of NaHCO3 improves performance, possibly by facilitating the efflux of hydrogen ions from working muscles and thereby delaying the onset of fatigue.


Both acute and serial NaHCO3 loading significantly improved 4-minute cycling performance when compared with that in a placebo trial. However, serial NaHCO3 loading may provide a convenient and practical alternative approach for athletes preparing for competition.


Despite longer exercise duration in alkalosis, plasma norepinephrine and epinephrine concentrations at exhaustion were reduced by 30 and 34%, respectively. These results indicate that alkalosis increased muscle lactate accumulation during exhaustive exercise. These changes were associated with a reduced blood catecholamine response to exercise.


Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.


Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.


In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.


In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.


It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.


NaHCO3 administration for 5 d may prevent acid-base balance disturbances and improve performance during anaerobic exercise in a dose-dependent manner.


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


NaHCO₃ supplementation increased blood HCO₃⁻ concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO₃ may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


Our findings suggest that training intensity, rather than the accumulation of H(+) during training, may be more important to improvements in beta m. The group ingesting NaHCO(3) before each training session had larger improvements in the LT and endurance performance, possibly because of a reduced metabolic acidosis during training and a greater improvement in muscle oxidative capacity.


Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols.


Pre-exercise alkalosis attenuates blood acid-base perturbations from supramaximal exercise to exhaustion, regardless of whether the recovery mode is active or passive. These findings suggest that individuals may benefit from introducing a pre-exercise alkalotic condition while including passive recovery during high-intensity training protocols.


Rating of perceived effort (RPE) was not influenced nor ratings of perceived readiness. Sodium bicarbonate ingestion modified significantly the blood acid-base balance, although the induced alkalosis did not improve the Wingate test performance, RPE and perceived readiness across three consecutive WTs in elite BMX cyclists.


Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.


Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.


The intravascular volume expansion with NaHCO3 rather than the increase in blood buffer capacity may underlie the previously reported benefit of orally ingested bicarbonate in exercise performance.


The primary finding of this investigation was that orally-induced alkalosis does not significantly affect plasma epinephrine concentrations or performance following 90 s of maximal cycle exercise in untrained men.


The results indicate that subacute acid base changes do not affect proinsulin cleavage. Although acute calcium loading has no demonstrable effect, chronic hypercalcaemia may influence the mechanism of insulin secretion.


The results of this study suggest that ingestion of NaHCO(3) improves sprint performance during prolonged intermittent cycling.


The results of this study suggest that NaHCO3 ingestion can improve intermittent-sprint performance and may be a useful supplement for team-sport athletes.


The results of this study suggest that the ingestion of NaHCO(3) before intermittent type exercise was sufficient to induce metabolic alkalosis but did not significantly affect performance. However, because significant individual variations in performance were observed, an individual approach to bicarbonate ingestion is recommended based on the intensity and duration of the required performance.


The single 0.2 and 0.3 gxkg-1 NaHCO3 dosages appeared to be the most effective for increasing blood-buffering capacity. The 0.2 gxkg-1 dosage is best ingested 40 to 50 minutes before exercise and the 0.3 gxkg-1 dosage 60 minutes before exercise.


The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.


There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.


These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.


These data suggest that successive 30-s high intensity performance may be improved when coupled with NaHCO3 supplementation.


Thigh muscle (vastus lateralis) pH measured immediately before the fifth cycling bout in four of the subjects revealed that the working muscles were less acid in the NaHCO3 trial (pH = 6.81) than during the NaCl treatment (pH = 6.73). Thus, the alkalizing influence of oral HCO3 supports the concept that the hydrogen ion concentration in blood and muscle has a direct influence on performance during repeated, supramaximal exercise.


This is likely because of the lower blood pH and slower recovery of blood HCO(3) post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO(3), however, its negative impact on repeated maximal exercise performance is reversed.


This may be a result of a lower demand on the whole body metabolic system in comparison with that for other modes of exercise in which ergogenic effects have been found.


This study demonstrated that, although alkali ingestion resulted in significant shifts in the blood acid-base balance, it failed to affect the 600 m running performance.


This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.


This study examined the increase in blood pH and bicarbonate concentration after ingestion of a standard sodium bicarbonate solution. Peak blood pH and bicarbonate concentration occurred between 60 and 90 minutes. Values decreased over the remainder of the ingestion period although still elevated above preingestion levels.


Time to exhaustion at 100% of VO2max was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)].(ABSTRACT TRUNCATED AT 250 WORDS).


We would suggest using chronic ingestion as a means to improve high intensity work rather than the acute ingestion of sodium bicarbonate. The ingestion of sodium bicarbonate, over a period of six days, significantly improved work output two days after bicarbonate ingestion ceased.


When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


After 4 weeks, the reduction in measurable extrinsic stain in the baking soda gum group was statistically significant (P = .0044) relative to baseline. Statistical analysis of the placebo gum group revealed no significant change in extrinsic stain from baseline. The magnitude of the unadjusted longitudinal reduction in extrinsic stain in the baking soda gum group was 29.7% at 4 weeks.


ARM & HAMMER DENTAL CARE The Baking Soda Gum (AHDC) reduced dental stain by 70.8%, compared to reductions of 71.9% and 65.3%, after use of 2 experimental gum formulations. Whitened appearance improved by 1.73 shade tabs using AHDC gum, and up to 2.49 shade tabs with the experimental formulations. These results suggest that the use of baking soda-containing gum after meals, in conjunction with good oral hygiene, can improve both extrinsic dental staining and the whitened appearance of teeth.


Examinations postbaseline were performed after 2 and 4 weeks. The reduction in measurable extrinsic stain in the baking soda gum group vs the breath mint control was statistically significant at 2 weeks (P < .0002) and at 4 weeks (P < .0008). Statistical analysis of the data revealed a significant change in extrinsic stain from baseline for both groups. The magnitude of the unadjusted longitudinal reduction in extrinsic stain in the baking soda gum group was 51% at 4 weeks.


Bicarbonated mineral waters 1 and 2 did not show any significant differences. Drinking sodium bicarbonate-rich mineral waters reduces postprandial lipaemia in healthy postmenopausal women compared to drinking a low mineral water.


However, oxidation of the exogenous acetate almost entirely (90%) replaced the additional fat that had been oxidized during the bicarbonate trial. We determined that 80.1 +/- 2.3% of an exogenous source of acetate is oxidized in humans at rest. Whereas NaHCO3 ingestion increased fat oxidation, a similar response did not occur following NaAc ingestion despite the fact both sodium salts induced a similar increase in energy expenditure and shift in acid-base balance.


In conclusion, bicarbonate supplementation does not appear to improve insulin sensitivity or glucose control in non-diabetic older adults.


Results suggests an increase in insulin sensitivity after BMWs consumption. This effect is more marked in the women, who have higher HOMA values. These waters should be considered part of a healthy diet in order to prevent insulin resistance and cardiovascular disease.


  • Sodium Bicarbonate for the Cardiovascular System

Administration of NaHCO3 from the start of the diet to the subjects in group 2 prevented both the metabolic acidosis and the increase in NH4+ N excretion and attenuated the increase in blood and urine 3-hydroxybutyrate. When NaCl replaced NaHCO3 during week 4, ammonium N excretion doubled. Urea N excretion was comparable in both groups and was unaffected by bicarbonate.(ABSTRACT TRUNCATED AT 250 WORDS).


Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.


Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS).


As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.


Blood [HCO3-] was significantly higher (P < or = 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4)s; CIT 172.8 (SEM 29.7)s; and PLC 222.3 (SEM 39.7)s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.


Blood free fatty acids (FFA) increased with NaHCO3, and FFA and glycerol decreased with NH4Cl and Arg-HCl, suggesting that FFA availability mediated the pH effects on hepatic ketogenesis. These results demonstrate that modest changes in systemic pH modify FFA availability and TK production rates.


Blood lactate concentration [La] progressively increased with the completion of each exercise set ([La] set 1-5: NaHCO3, 1.37 to 11.15; placebo, 1.31 to 9.81 mM); but were not significantly different between treatments. Repetitions performed in the final exercise set were not significantly different between groups (NaHCO3: 19.6 +/- 1.6, placebo: 18.2 +/- 1.1 repetitions).(ABSTRACT TRUNCATED AT 250 WORDS).


Blood lactate, pH, SBC and BE were significantly higher (P less than 0.05) at post-exercise in NaHCO3 treatments. These data are in agreement with previous findings that during repeated bouts of exercise pre-exercise administration of NaHCO3 improves performance, possibly by facilitating the efflux of hydrogen ions from working muscles and thereby delaying the onset of fatigue.


Both acute and serial NaHCO3 loading significantly improved 4-minute cycling performance when compared with that in a placebo trial. However, serial NaHCO3 loading may provide a convenient and practical alternative approach for athletes preparing for competition.


Despite longer exercise duration in alkalosis, plasma norepinephrine and epinephrine concentrations at exhaustion were reduced by 30 and 34%, respectively. These results indicate that alkalosis increased muscle lactate accumulation during exhaustive exercise. These changes were associated with a reduced blood catecholamine response to exercise.


Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.


Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.


In conclusion, bicarbonate supplementation does not appear to improve insulin sensitivity or glucose control in non-diabetic older adults.


In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.


In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.


It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.


NaHCO3 administration for 5 d may prevent acid-base balance disturbances and improve performance during anaerobic exercise in a dose-dependent manner.


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


NaHCO₃ supplementation increased blood HCO₃⁻ concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO₃ may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


Our findings suggest that training intensity, rather than the accumulation of H(+) during training, may be more important to improvements in beta m. The group ingesting NaHCO(3) before each training session had larger improvements in the LT and endurance performance, possibly because of a reduced metabolic acidosis during training and a greater improvement in muscle oxidative capacity.


Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols.


Pre-exercise alkalosis attenuates blood acid-base perturbations from supramaximal exercise to exhaustion, regardless of whether the recovery mode is active or passive. These findings suggest that individuals may benefit from introducing a pre-exercise alkalotic condition while including passive recovery during high-intensity training protocols.


Rating of perceived effort (RPE) was not influenced nor ratings of perceived readiness. Sodium bicarbonate ingestion modified significantly the blood acid-base balance, although the induced alkalosis did not improve the Wingate test performance, RPE and perceived readiness across three consecutive WTs in elite BMX cyclists.


Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.


Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.


The intravascular volume expansion with NaHCO3 rather than the increase in blood buffer capacity may underlie the previously reported benefit of orally ingested bicarbonate in exercise performance.


The primary finding of this investigation was that orally-induced alkalosis does not significantly affect plasma epinephrine concentrations or performance following 90 s of maximal cycle exercise in untrained men.


The results indicate that subacute acid base changes do not affect proinsulin cleavage. Although acute calcium loading has no demonstrable effect, chronic hypercalcaemia may influence the mechanism of insulin secretion.


The results of this study suggest that ingestion of NaHCO(3) improves sprint performance during prolonged intermittent cycling.


The results of this study suggest that NaHCO3 ingestion can improve intermittent-sprint performance and may be a useful supplement for team-sport athletes.


The results of this study suggest that the ingestion of NaHCO(3) before intermittent type exercise was sufficient to induce metabolic alkalosis but did not significantly affect performance. However, because significant individual variations in performance were observed, an individual approach to bicarbonate ingestion is recommended based on the intensity and duration of the required performance.


The single 0.2 and 0.3 gxkg-1 NaHCO3 dosages appeared to be the most effective for increasing blood-buffering capacity. The 0.2 gxkg-1 dosage is best ingested 40 to 50 minutes before exercise and the 0.3 gxkg-1 dosage 60 minutes before exercise.


The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.


There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.


These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.


These data suggest that successive 30-s high intensity performance may be improved when coupled with NaHCO3 supplementation.


Thigh muscle (vastus lateralis) pH measured immediately before the fifth cycling bout in four of the subjects revealed that the working muscles were less acid in the NaHCO3 trial (pH = 6.81) than during the NaCl treatment (pH = 6.73). Thus, the alkalizing influence of oral HCO3 supports the concept that the hydrogen ion concentration in blood and muscle has a direct influence on performance during repeated, supramaximal exercise.


This is likely because of the lower blood pH and slower recovery of blood HCO(3) post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO(3), however, its negative impact on repeated maximal exercise performance is reversed.


This may be a result of a lower demand on the whole body metabolic system in comparison with that for other modes of exercise in which ergogenic effects have been found.


This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.


This study examined the increase in blood pH and bicarbonate concentration after ingestion of a standard sodium bicarbonate solution. Peak blood pH and bicarbonate concentration occurred between 60 and 90 minutes. Values decreased over the remainder of the ingestion period although still elevated above preingestion levels.


Time to exhaustion at 100% of VO2max was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)].(ABSTRACT TRUNCATED AT 250 WORDS).


Treatment with a buffer, which effectively maintained pH above 7.40, significantly suppressed endorphin release (F = 3.07; P < 0.0001). The results of this study indicate that acidosis rather than any other physiological change associated with high-intensity exertion is the primary stimulus for beta-endorphin release.


We would suggest using chronic ingestion as a means to improve high intensity work rather than the acute ingestion of sodium bicarbonate. The ingestion of sodium bicarbonate, over a period of six days, significantly improved work output two days after bicarbonate ingestion ceased.


When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


  • Sodium Bicarbonate for the Muscular System

Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.


Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.


Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS).


As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.


Blood [HCO3-] was significantly higher (P < or = 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4)s; CIT 172.8 (SEM 29.7)s; and PLC 222.3 (SEM 39.7)s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.


Blood lactate concentration [La] progressively increased with the completion of each exercise set ([La] set 1-5: NaHCO3, 1.37 to 11.15; placebo, 1.31 to 9.81 mM); but were not significantly different between treatments. Repetitions performed in the final exercise set were not significantly different between groups (NaHCO3: 19.6 +/- 1.6, placebo: 18.2 +/- 1.1 repetitions).(ABSTRACT TRUNCATED AT 250 WORDS).


Blood lactate, pH, SBC and BE were significantly higher (P less than 0.05) at post-exercise in NaHCO3 treatments. These data are in agreement with previous findings that during repeated bouts of exercise pre-exercise administration of NaHCO3 improves performance, possibly by facilitating the efflux of hydrogen ions from working muscles and thereby delaying the onset of fatigue.


Both acute and serial NaHCO3 loading significantly improved 4-minute cycling performance when compared with that in a placebo trial. However, serial NaHCO3 loading may provide a convenient and practical alternative approach for athletes preparing for competition.


Despite longer exercise duration in alkalosis, plasma norepinephrine and epinephrine concentrations at exhaustion were reduced by 30 and 34%, respectively. These results indicate that alkalosis increased muscle lactate accumulation during exhaustive exercise. These changes were associated with a reduced blood catecholamine response to exercise.


Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.


Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.


In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.


In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.


In conclusion, water polo players should not expect substantial enhancement in intermittent-sprint performance from NaHCO3 supplementation.


It was concluded that during exercise consisting of repeated, short-duration sprints, power output was enhanced following the ingestion of sodium bicarbonate, (300 mg/kg body weight).


It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.


NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.


NaHCO₃ supplementation increased blood HCO₃⁻ concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO₃ may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


Our findings suggest that training intensity, rather than the accumulation of H(+) during training, may be more important to improvements in beta m. The group ingesting NaHCO(3) before each training session had larger improvements in the LT and endurance performance, possibly because of a reduced metabolic acidosis during training and a greater improvement in muscle oxidative capacity.


Results show that BA improved high-intensity cycling capacity. However, despite a 6-s (∼4%) increase in TTE with the addition of SB, this did not reach statistical significance, but magnitude-based inferences suggested a ∼70% probability of a meaningful positive difference.


Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.


Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.


Ten of the athletes completed all the races. The athletes' average times for trials B, P and C were 253.9, 256.8 and 258.0 s, respectively. The data were analysed using a two-way ANOVA with replicates and Tukey tests. This revealed a difference between trial B and trials P and C (P < 0.05), but no difference between trials P and C. These findings, therefore, indicate that sodium bicarbonate can have an ergogenic effect upon 1500-m running.


The findings suggest that 0.3 g·kg-1 NaHCO3 ingested 2.5 hours before exercise enhances the blood buffering potential and may positively influence swim performance.


The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.


The intravascular volume expansion with NaHCO3 rather than the increase in blood buffer capacity may underlie the previously reported benefit of orally ingested bicarbonate in exercise performance.


The match-induced declines in the consistency scores were significantly larger in the placebo trial than those in the bicarbonate trial. This study suggested that NaHCO3 supplementation could prevent the decline in skilled tennis performance after a simulated match.


The primary finding of this investigation was that orally-induced alkalosis does not significantly affect plasma epinephrine concentrations or performance following 90 s of maximal cycle exercise in untrained men.


The results of this study suggest that ingestion of NaHCO(3) improves sprint performance during prolonged intermittent cycling.


The results of this study suggest that NaHCO3 ingestion can improve intermittent-sprint performance and may be a useful supplement for team-sport athletes.


The results of this study suggest that the ingestion of NaHCO(3) before intermittent type exercise was sufficient to induce metabolic alkalosis but did not significantly affect performance. However, because significant individual variations in performance were observed, an individual approach to bicarbonate ingestion is recommended based on the intensity and duration of the required performance.


The subjects in E completed 950.9 (81.1) kJ of work, which was significantly more (F(2,27) = 5.28, P < 0.01) than during either the C [835.5 (100.2) kJ] or P [839.0 (88.6) kJ] trials. No differences were seen in peak power or in the power:mass ratio between these three groups. The results of this study suggest that sodium bicarbonate may be used to offset the fatigue process during high-intensity, aerobic cycling lasting 60 min.


There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.


These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.


These data suggest that successive 30-s high intensity performance may be improved when coupled with NaHCO3 supplementation.


Thigh muscle (vastus lateralis) pH measured immediately before the fifth cycling bout in four of the subjects revealed that the working muscles were less acid in the NaHCO3 trial (pH = 6.81) than during the NaCl treatment (pH = 6.73). Thus, the alkalizing influence of oral HCO3 supports the concept that the hydrogen ion concentration in blood and muscle has a direct influence on performance during repeated, supramaximal exercise.


This is likely because of the lower blood pH and slower recovery of blood HCO(3) post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO(3), however, its negative impact on repeated maximal exercise performance is reversed.


This may be a result of a lower demand on the whole body metabolic system in comparison with that for other modes of exercise in which ergogenic effects have been found.


This study demonstrated that, although alkali ingestion resulted in significant shifts in the blood acid-base balance, it failed to affect the 600 m running performance.


This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.


Time to exhaustion at 100% of VO2max was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)].(ABSTRACT TRUNCATED AT 250 WORDS).


We would suggest using chronic ingestion as a means to improve high intensity work rather than the acute ingestion of sodium bicarbonate. The ingestion of sodium bicarbonate, over a period of six days, significantly improved work output two days after bicarbonate ingestion ceased.


When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


Accordingly, the cerebral metabolic ratio decreased equally during the Sal and Bicarb trials: from 5.8±0.6 at rest to 1.7±0.1 and 1.8±0.2, respectively. The enlarged blood-buffering capacity after infusion of Bicarb eliminated metabolic acidosis during maximal exercise but that did not affect the cerebral lactate uptake and, therefore, the decrease in the cerebral metabolic ratio.


NaHCO3 administration for 5 d may prevent acid-base balance disturbances and improve performance during anaerobic exercise in a dose-dependent manner.


Rowers' performance in 2,000-m efforts can improve by ~2% with 6 mg/kg BM caffeine supplementation. When caffeine is combined with sodium bicarbonate, gastrointestinal symptoms may prevent performance enhancement, so further investigation of ingestion protocols that minimize side effects is required.


Treatment with a buffer, which effectively maintained pH above 7.40, significantly suppressed endorphin release (F = 3.07; P < 0.0001). The results of this study indicate that acidosis rather than any other physiological change associated with high-intensity exertion is the primary stimulus for beta-endorphin release.


  • Sodium Bicarbonate for the Endocrine System

  • Sodium Bicarbonate for the Nervous System

Scroll to top